

PA6G

> Carretos

> Pinhões

por CNC

> Placa > Varão

> Peças para maquinação

> Peças para maquinação com eliminação de ruído

> Peças dinâmicas de

isolamento eléctrico

> Guias > Casquilhos

> Placa

> Barra

> Varão

> Perfis

> Placa

> Barra

> Varão

(sob pedido)

> Placa

> Barra

> Varão

> Placa com fibra de vidro > Perfis

POLIPROPILENO	CLORETO DE POLIVINIL	PS	ABS

> Placa

> Barra

> Varão

> Perfis

> Placa

> Barra

> Varão

> Perfis

	PP PVC HIPS		HIPS	ABS			
Descrição	> Rígido > Bom comportamento ao calor e ao corte > Soldável > Recuperação elástica à compressão > Esterilizável > Excelente resistência química	Descrição	 > Rígido, soldável e colável > Excelente comportamento ao ataque químico > Boa maquinação > Isolante eléctrico, não inflamável > Permite maquinar peças com tolerâncias apertadas > Mau no desgaste por abrasão > Aumenta a dureza e diminui a resistência ao choque com o frio > Acima dos 40 °C aumenta a resistência ao impacto, mas deforma sob carga 	Descrição	> Moldável em vácuo > Alta resistência ao impacto	Descrição	> Baixa absorção de humidade > Boas propriedades de absorção de som > Alta rigidez > Resistência a baixas temperaturas > Alto amortecimento mecânico > Boa termoformação > Boa soldabilidade > Boa adesão > Excelente comportamento eléctrico
Aplicações Típicas	Componentes para indústria química Galvanoplastia Cepos de corte para indústria de calçado, têxtil e papel Uso em ventilação anticorrosiva Lavadores de gases	Aplicações Típicas	 Indústria química Indústria electrónica Revestimento de tanques Peças para bombas e válvulas Decantadores no tratamento de águas residuais Revestimento de tanques para ácidos e bases 	Aplicações Típicas	> Transporte > Indústria de embalagens > Blindagens e protecções de máquinas > Expositores	Aplicações Típicas	Construção de aeronaves Indústria eléctrica Reabilitação Construção de veículos Mecânica de precisão Engenharia sanitária Indústria aeronáutica Indústria automóvel Electrónica
Disponível em	> Placa > Varão > Tubo > Válvulas	Disponível em	> Placa > Varão > Perfis > Tubo > Válvulas	Disponível	> Placa	Disponível em	> Placa > Varão

	РОМ С	POM C ESD
Descrição	Stabilidade dimensional superior às Poliamidas Excelente comportamento à fadiga por esforços alternados Bom isolamento eléctric Resistente à hidrólise e a soluções alcalinas Boa maquinação e aca bamento final Pode ser carregado con fibra de vidro ou lubrific Fisiologicamente inerte podendo estar em contacto com alimentos	m cante
Aplicações Típicas	Mecânica de precisão Carretos de módulo inferior a 1 Peças com efeito mola e com variações de velocidade páraarranca Aplicações em meios húmidos Linhas de enchimento Máquinas de lavar Componentes de bombas e equipamentos eléctricos	> Engenharia mecânica > Uso em meios passíveis de explosão > Indústria automóvel, têxtil, eléctrica, electrónica e de semi-condutores
Disponível	> Placa > Varão > Tubo	> Placa > Varão

POLIACETAL

		POLIESTER
	PET	PET GLD
Descrição	> Semi-cristalino > Muito duro e rígido > Resistente ao desgaste > Baixo coeficiente de fricção > Excelente estabilidade dimensional > Permite maquinação com tolerâncias apertadas > Fisiologicamente inerte podendo estar em contacto com alimentos > Isolante eléctrico > 100% reciclável	> Muito bom desliza- mento > Baixo coeficiente de fricção > Autolubrificado > Excelente compor- tamento ao desgaste > Alta rigidez > Boa estabilidade dimensional
Aplicações Típicas	> Equipamento médico > Peças de precisão electrónica > Casquilhos e guias não sujeitas a choque > Rotores para ar comprimido > Peças sujeitas a fricção contínua em temperatura até 110 °C	> Peças de indústria em geral > Mecânica de precisão > Engenharia mecâ- nica > Indústria eléctrica > Máquinas para a indústria alimentar
Disponível	> Placa > Varão > Tubo	> Placa > Varão

Descrição	 > Boa rigidez > Tenacidade a baixas temperaturas > Resiliente à fadiga > Absorve humidade, o que altera a sua estabilidade dimensional > Aplicações de tipo universal em mecânica geral 	 Carga de Mos2 Cor preta Resistente aos raios U.V. Excelente comportamento ao desgaste Dispensa lubrificação Bom comportamento ao impacto Baixo coeficiente de fricção Maquinação fácil Excelente no contacto com aço RZ com valor elevado 	> Poliamida 6 vazada > Cor marfim > Tenacidade e rigidez > Menor absorção de humidade e maior elasticidade > Menos tensões internas > Boa maquinação > Excelente acabamento final, peças de grandes dimensões > Pode ser carregada com PE, óleo e Mos2 para baixar a fricção
Aplicações Típicas	> Carretos > Roletes > Casquilhos > Juntas > Anilhas de encosto > Pinhões > Guias > Réguas de desgaste	Carretos e casquilhos de fortes cargas não lubrificados Placas de deslizamento e desgaste Segmentos e raspadeiras Polias passadoras de cabos Guias de transportadores Guias de prensas Recomendada para uso exterior Resiste ao tempo e raios U.V.	 Substitui o bronze e termolaminados industriais tipo Celeron, quando respeitadas cargas e temperaturas Coroas dentadas Carretos de grande módulo Cargas de grande esforço mecânico Meios abrasivos Resistência à corrosão e abrasão em máquinas agrícolas e industriais
Disponível em	> Placa > Varão > Tubo	> Placa > Varão > Tubo	> Placa > Varão > Tubo
Descrição	PA6 G MO > Vazada por centrifugação com adição de lubrificante > Estável até 120° C, cristalina e resistente cargas elevadas > Excelente valor de PV e ausência de páraarranca > Boa no desgaste por abrasão > Resistente ao envelhe cimento por termo-ox ção e aplicada em siti	> Excelentes propriedade de deslizamento e resis a tência > Permite elevados esfor e velocidades de desliz mento > Baixo coeficiente de atr estático (stick-slip) > Fácil maquinação	a carga e desgaste > Boa estabilidade dimen- cos sional a- > Resiliente > Excelente para maquina-

PA6 MO

PA6

ções mais exigentes Isenta de tensões internas, para grandes usos e uso com aços de grande dureza

> Polias

- Patins

> Placa

- Varão

> Tubo

Disponível em

de terraplanagem

carga elevada

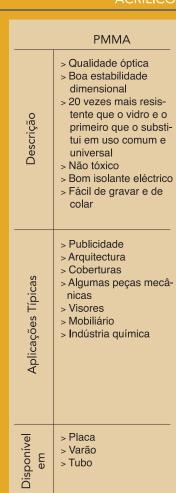
forte abrasão

> Carretos e rodas dentadas de módulo grande e

Réguas de desgaste em

> Roletes na laminagem de metais, guias, tensores

> Substitui casquilhos de > Casquilhos bronze ou termolaminados > Barras de desgaste


> Casquilhos em máquinas > Guias de deslize

> Polias

> Placa

> Varão > Tubo

ACRÍLICO POLICARBONATO POLIESTER

> Tubo

		TOLICARDONA
	PC	ESD
Descrição	Com e sem qualidade óptica Excelente temperatura de serviço Muito boa estabilidade dimensional Boa maquinação Podem ser adicionadas cargas de fibra de vidro para melhorar a resistência mecânica	> Electro-dissipativo > Descarga eléctrica > Pode ter revestimento electrica > Resistente à abrasão > Transparente > Pode ser moldado a frio > Alta resistência a químicos > Resistente à chama
icações Típicas	Peças de electrónica e química Equipamento médico Peças onde é exigida transparência Aplicações em temperatura constante de 120 °C Indústria de vidro e fundição	 Zonas de alta sensibilidade hospitalar e salas limpas Construção de salas para fabricantes de produtos e equipamentos electrónicos Salas de desinfecção intensions de simpedida de procesos de fabricação especialmente perigosos

> Placa

> Varão

PVDF

_		
		PETG
	Descrição	> Transparente > Elevada resistência ao impacto > Termoformável > Quinagem a frio > Adequado para contacto com produtos alimentares > Fácil de imprimir
a.	Aplicações Típicas	> Visores > Peças termoformadas > Equipamentos médicos > Protecção de máquinas > Expositores
	Disponível em	> Placa

PEEK > Semi-cristalino, não arde > Pode trabalhar até 250 °C sem perda das suas propriedades mecânicas > Carregado com carbono, fibra de vidro ou grafite > O mais baixo coeficiente de dilatação linear e fibras inorgânicas > Excelente comportamento em carga dinâmica e propriedades eléctricas mesmo a altas temperaturas > Resistente a químicos, à hidrólise mesmo a 250 °C, aos raios-x Beta e Alfa mesmo a temperaturas elevadas > Indústrias nuclear, médica, militar, aeroespacial, electrónica e automóvel > Carretos de esforço elevado > Casquilhos > Barras de fricção e desgaste> Segmentos de pistão > Válvulas > Contadores de água quente > Peças na indústria de refinação petrolífera > Tem aplicações antes reservadas às ligas metálicas especiais Disponível em > Placa > Varão

TEFLON FLUORETO DE POLIVINILIDENO

Aplic

Disponível em

> Placa

> Varão

POLYSULFONA

POLIURETANO TERMOLAMINADOS

PTFE		
Descrição	> Quimicamente inerte > Boa amplitude térmica de utiliza- ção -260 °C a +300 °C > Baixo coeficiente de atrito > O melhor dos materiais sólidos > Autolubrificado e resistente ao tempo > Colagem difícil, mas possível > Comportamento mecânico mo- derado > Podem ser adicionadas cargas com de grafite, bronze, fibra de vidro e MOS2 para melhorar as propriedades mecânicas	
Aplicações Típicas	> Sedes de válvulas > Juntas > Empanques > Segmentos > Indústria química > Indústria farmacêutica > Indústria alimentar > Aparelhos de deslizamento na construção de pontes e pórticos	
Disponível	> Placa > Varão > Tubo	

Descrição	> Altamente cristalino > Temperatura de serviço entre -40 °C a +150 °C > Resiste bem aos raios U.V. e a radiações Gama > Completamente atóxico > De fácil maquinação e boa estabilidade dimensional > Excelente resistência química e ao desgaste > Soldável pelos métodos convencionais
Aplicações Típicas	> Peças para química pura > Indústria alimentar > Componentes de electrónica > Aparelhos médicos e hospitalares
Disponível em	> Placa > Varão > Tubo > Válvulas


	PSU					
Descrição	Boa rigidez e boa estabilidade dimensional Temperatura alta em serviço contínuo Muito boa resistência à hidrólise, à radiação de alta energia e à tracção Dificilmente inflamável e auto extinguível Muito baixo desenvolvimento de fumo Dureza elevada e excelente termoformação Boa maquinabilidade e soldabilidade Baixo coeficiente de expansão térmica Boas propriedades adesivas e de isolamento térmico Absorção de radiação excepcionalmente baixa na faixa de microondas					
Aplicações Típicas	Indústrias eléctrica, química, construção, electrónica e de processamento de alimentos Engenharia mecânica Equipamento médico hospitalar					
Disponível em	> Placa > Varão					

	PUR		
Descrição	Conhecido por Vulkolan Elastómero sintético com dureza variável Resiste muito bem ao desgaste Grande elasticidade Bom poder de amortecimento		
Aplicações Típicas	Manutenção e transporte Indústria gráfica Revestimento de bases metálicas Guias e raspadeiras Dura cinco vezes mais que a borracha natural nas mesmas condições de utilização		
Disponível	> Placa > Varão > Tubo		

_				TERMOLAMINADO
		PF CP 201 BAQUELITE	PF CC 201 CELERON	EPGC 202 G11
_	Descrição	 > Base de papel kraft com a adição de resina fenólica > Boas propriedades eléctricas > Bom acabamento superficial > Baixa absorção de humidade > Boa resistência mecânica ao impacto menor que outros termolaminados > Fácil maquinação 	 > Base de tecido de algodão com a adição de resina fenólica > Excelentes propriedades mecânicas > Boa estabilidade dimensional e resistência à carga > Excelente resistência à compressão > Possibilidade de arrefecimento e de lubrificação com água, óleo e massa lubrificante > Boa adesão para colagem 	Base de tecido de fibra de vidro e resina epoxy Elevada qualidade Excelentes propriedades eléctricas e estabilidade dimensional Excelentes resistências mecânicas Boa adesão para colagem
	Aplicações Típicas	> Aplicações eléctricas > Aplicações mecânicas > Suportes > Anilhas > Isoladores > Quadros eléctricos > Manípulos > Aplicações interiores em arquitectura	> Peças sujeitas a grandes cargas > Carretos > Guias > Ferramentas > Posicionadores > Peças de desgaste > Peças mecânicas de grandes dimensões	> Peças sujeitas a grandes cargas > Isolamento eléctrico > Material alternativo a liga metálicas para tempera- turas de 130/150/180 e 200 °C > Ferramentas > Posicionadores > Indústira eléctrica > Indústria electrónica
-	Disponível	> Placa > Varão > Tubo	> Placa > Varão > Tubo > Retalhos por consulta	> Placa > Varão > Tubo

			PROP	RIEDADES FÍSI		/		EDADES MECÂI	NICAS		/		ES TÉRMICAS	PROPRIEDADES ELÉCTRICAS				
PLÁSTICOS T	ÉCNIC	OS	183.1 humidag		WEW ISO COLORISE	05 455 10 45 10 10 10 10 10 10 10 10 10 10 10 10 10				Sold Sold Sold Sold Sold Sold Sold Sold	2, 2000.	03,504,00	78 30 30 30 30 30 30 30 30 30 30 30 30 30	(5.1 "(5.8)"(5.	Constante of effective	Asue,	/es/~ //perficial/	
PARA ENGENHARIA			4650/530 06 14 11 11 15 15 15 15 15 15 15 15 15 15 15	Sp S	ode limi WEWIS	110 06 011 6 012 012 012 012 012 012 012 012 012 012	SANS WEVE	Téhris ac	Oures s	eratura eriodos	eratura eríodos	iente de térmica (Condutibilida	P. S.	Stante chi	Resistividade tran	Possitividade suba	
UNIDADES g/cm³		% Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		120		Alongam, DM	ki/m²		•c		0000							
	PE300	0.95	< 0.01	UL94	/ MPa 22	MPa 800	> 50	12	Escala D 63	-5080	100	10 ⁻⁶ /k	0.40	/ kv/mm 45	2.3	/ _∩ cm > 10 ¹⁴	> 10 ¹⁴	
	PE500	0.96	< 0.01	НВ	27	1200	> 50	sem quebra	65	-10080	100	150-230	0.40	45	2.3	> 10 ¹⁴	> 10 ¹⁴	
SANIPLAC POLIETILENO	PE1000	0.93	< 0.01	НВ	20	680	> 200	sem quebra	63	-25080	130	150-230	0.40	45	2.3	> 10 ¹⁴	> 10 ¹⁴	
1 OLIE HELIYO	PE1000 MR. AST	0.95	< 0.01	НВ	20	700	> 200	sem quebra	63	-25080	130	150-230	0.40			< 10 9	< 10 9	
	NORDUR	0.94	< 0.02	НВ	18	650	> 50	sem quebra	59	-15080	120	200	0.40			> 10 ¹²	> 10 ¹²	
POLIPROPILENO	PP	0.92	0.1	НВ	33	1380	150	4	73	0100	130	160	0.22	50	2.3	10 ¹⁶	10 ¹⁶	
CLORETO DE POLIVINIL	PVC	1.45	0.2	V0/V0	45	3000	15	2	79	060	70	80	0.2	32	3	10 ¹⁵	10 ¹³	
PS	PS	1.06	< 0.1	НВ	20	1730	72	8	75	80	90	90	0.17	18	2.5	10 ¹²	10 ¹²	
ABS	ABS	1.04	0.3	НВ	38	2000	50	25	74	-4080	100	90	0.17	20	3.1	10 ¹⁵	10 ¹⁴	
	PA6	1.14	3.0	НВ	80	3200	50	3	82	-4085	160	90	0.23	20	3.9	10 ¹⁵	10 ¹³	
	PA6 MO	1.14	3.0	НВ	80	3200	50	3	82	-4085	160	90	0.23	20	3.8			
NYLON	PA6G	1.15	2.5	НВ	75	3400	45	3	83	-40110	170	80	0.25	20	3.7	10 ¹⁵	10 ¹³	
	PA6 G MO	1.15	2.5	НВ	82	3500	35	2.5	83	-40110	170	80	0.25					
	PA6 G OL	1.14	2.0	НВ	70	3300	50	4	82	-40110	160	80	0.25					
	PA 6.6	1.15	2.8	HB/V2	85	3300	50	3	83	-3095	170	80	0.23	25	3.8	10 ¹⁵	10 ¹³	
POLIACETAL	РОМ С	1.41	0.2	НВ	67	2800	30	6	81	-50100	140	110	0.31	40	3.8	10 ¹³	10 ¹³	
	POM C ESD	1.40	0.3	НВ	40	1900	30	5	79	-20100	140	130	0.31			5x10 ³	10 5	
POLIESTER	PET	1.38	0.3	НВ	85	3000	15	2	84	-20115	180	60	0.28	20	3.4	10 ¹⁸	10 ¹⁶	
	PET GLD	1.44	0.2	НВ	70	2600	10	2	82	-20115	180	65	0.28	20	3.4	10 ¹⁸	10 ¹⁶	
ACRÍLICO	PMMA	1.19	0.4	НВ	80	3300	8	20	90	85	90	65	0.19	20 - 25	3.7	10 ¹⁵	10 ¹⁵	
POLICARBONATO	PC	1.20	0.15	V0	75	2370	75	sem quebra	85	-60120	140	65	0.21	30	3.0	10 ¹⁵	10 ¹⁵	
	ESD	1.20	0.15	V0	75	2370	75	sem quebra	85	-60120	140	65	0.21				≥10 ⁴ - ≤10 ⁸	
POLIESTER	PETG	1.27	0.2		45	2020		sem quebra	80	65			0.20	16.1	2.6	10 ¹⁵	10 ¹⁶	
TEFLON	PTFE	2.20	< 0.05	V0		700	250		54 - 60	-200260	260	12 - 13	0.25	48	2.1		10 ¹²	
FLUORETO DE POLIVINILIDENO	PVDF	1.78	< 0.4	V0	55	2200	> 30	15	77	0140	150	100 - 140	0.19	20	8.0	10 ¹⁴	10 ¹⁴	
POLYSULFONA	PSU	1.24	0.2	HB/V0	180	2600	15	6	85	-50160	180	55	0.26	30	3.2	10 ¹⁵	10 ¹⁴	
POLYETHERETHERKETON	PEEK	1.31	0.2	V0	110	4000	20	4	88	-60250	310	50	0.25	20	3.2	4.9x10 ¹⁶	10 ¹⁸	
	PF CC 201 CELERON	1.40	120 mg	V0		7000		10		120	130		0.32	12				
TERMOLAMINADOS	PF CP 201 BAQUELITE	1.40	280 mg	V0		8000		3.5		100	120		0.26					
	EPGC 202 G11	1.85	15.0 mg	V0		22000		65		130	155		0.42	10.2				

		GUIA DE APLICAÇÕES																															
															ENGE	NHARIA											TERM	OLAMIN	ADOS	LAMIN	NADOS D	E POLIES	STER
						U	SO GER	AL							USOS	ESPECIA	AIS				QUA	LIDADES	SESPEC	IAIS			INI	DUSTRIA	IS	COM	I FIBRA I	NÃO TECI	DA
					_								_					_			Plást	icos de al	to desemp	penho			Resina	Resina	Ероху		Poliester le vidro não		Cerâ- micas
APLICAÇÕES EM:	*	PA6	PA6 MO	PA6 G	PA6 G + óleo	PA6.6	PA6 G + MOS2	POM	PETP	PE500	PE1000	PP	PA6 GF30	PA12	ABS	PC	PC + f vidro	PTFE	PVDF	PEEK	PEEK GF30	PEEK MOD	PEI	PSU	PEI	PES	Baquelite			Upm 203	Isovac 10R	Center	
Uniões para aparelhos de medida								•	•																								
Roletes para cargas elevadas		•		•																	•												
Roletes para pequenas cargas										•	•																						
Guias e Rodas distribuidoras							•				•																						
Roletes de transportadores		•	•					•	•																								
Polias e Roldanas		•	•					•	•																								
Anilhas de encosto		•				•																											
Chumaceiras de laminadores				•	•																												
Canhões e leitores								•	•				•				•																
Componentes de desgaste		•	•		•		•			•	•																						
Casquilhos sem lubrificação																																	
Rodas dentadas - módulos grandes		•		•			•																					•					
Rodas dentadas - módulos medios		•				•																											
Casquilhos grelhas ventiladoras		•	•		•		•				•																						
Rodas dentadas - módulos pequenos						•		•	•											•													
Casquilhos submersos								•						•				•				•						•					
Segmentos para pistões																		•		•	•					•							
Guias de deslizamento							•			•	•							•										•					
Jigs de montagem				•				•					•															•					
Gaiolas rolamentos		•				•																						•					
Palhetas de compressores																		•		•								•					
Peças de precisão						•		•	•																			•					
Raspadeiras		•								•	•							•															
Anéis de desgaste macacos hidraulicos		•									•							•	•														
Segmentos de vedação								•			•							•							•								
Empanques para bombas																		•	•	•		•											
Anéis de desgaste para motores eléctricos								•										•											•				
Componentes resistentes ataque químico										•	•	•						•	•				•	•									
Aplicações alimentares										•	•							•	•					•									
Sedes de válvulas								•			•							•	•	•													
												•						•		•									•				•
Parafusos femeas e anilhas		•				•							•																•				
Jigs para construção soldada																				•			•						•				•
Casquilhos estacadores guias isoladoras																											•		•		•		
Peças e punhos isoladores			•										•					•									•				•		
Isolamentos alta tensão																•							•				•		•			•	
Suportes barramentos eléctricos																																	
Separadores de fase																							•				•						
Suportes transformadores								0																			•	•	•	•		•	
Caixas isolantes										•	•																						
Isolamentos correntes fracas												0				0											•						
Placas terminais																		•											•		•		
Nucleo bobinagens																													•	•		•	
Isolamentos auto extinguíveis																																	
Isolamento bobinas electromagneticas																																	
Isolamentos para motores electricos																																	
Componentes puncoados																																	
Peças sujeitas a altas temperaturas		•														•													•	•			
i oçus sujeitas a aitas temperaturas																																	

GRADIS EM PRFV - Plástico Reforçado a Fibra de Vidro

Gradis em plástico reforçado a fibra de vidro (PRFV) são fabricados em fibra de vidro e resina, combinados num molde dedicado. Dependendo do tipo de resina utilizado, temos um gradil com uma resistência química e propriedades mecânicas específicas. A relação de fibra de vidro e de resina utilizada é de 35% para 65% respectivamente.

Vantagens dos Gradis em PRFV

■ Elevada resistência à corrosão ■ Anti-derrapantes ■ Isolantes eléctricos

■ Possibilidade de serem retardantes ao fogo
■ Leves
■ Resistentes aos raios U.V.

■ Altamente duráveis e resistentes
■ Não necessitam de manutenção
■ Possibilidade de serem anti-estáticos

Diferentes tipos de resina

Como standard, os Gradis em PRFV estão disponíveis em quatro tipos diferentes de resina:

■ Resina Ortoftálica - resina básica, multiusos e resistente ao meio ambiente

Resina Isoftálica - resina muito adequada a ambientes químicos muito corrosivos. É também altamente resistente ao fogo com emissões de fumo controladas

■ Vinilester - resina extremamente resistente a produtos químicos tais como ácidos, sais e outras substâncias corrosivas. É também altamente resistente ao fogo

Fenólica - resina bastante resistente a produtos químicos e extremamente resistente ao fogo, com emissões de fumo muito baixas. Muito utilizada na indústria petrolífera

	BOLETIM DE ENGENHARIA																
		DIME	NSÕES DO PAINE	L (mm)		RESINA											
N.º PEÇA	ESPESSURA		MALHA	DIMENSÃO DO PAINEL	M2	ISO-FR ISOFTÁLICO Verde RAL 6010	ISO-FR ISOFTÁLICO Cinza RAL 7035	ISO-FR VINILESTER Laranja RAL 2002	ISO-FR ORTOFTÁLICO Cinza Metálico RAL 9006	ISO-FR ORTOFTÁLICO Cinza RAL 7040	ISO-FR ISOFTÁLICO Amarelo RAL 1003	ISO-FR VINILESTER Cinza Escuro RAL 7043					
26x78	13	51x51		1225 * 4580	5.61 m2	•	•	•	•	•	×	×					
26×41	25	38x38		914 * 3048	2.79 m2	•		•	•	•	×	X					
26×46	25	38x38	2	1219 * 2438	2.97 m2						×	×					
26x64	30	38x38		1225 * 2980	3.65 m2						×	×					
26×66	30	38x38	•	1000 * 4037	4.04 m2						×	X					
26×15	30	19x19		1000 * 1990	1.99 m2				•	•	×	X					
26×20	30	19x19		1000 * 2980	2.98 m2						×	X					
26×16	30	19x19		1000 * 4037	4.04 m2						×	X					
26×25	30	19x19		1219 * 3658	4.46 m2						×	X					
26×40	38	38x38		914 * 3048	2.79 m2						×	X					
26×45	38	38x38		1219 * 2438	2.97 m2						×	X					
26×50	38	38x38	et a	1524 * 2438	4.65 m2						×	X					
26x53	38	38x38		1000 * 2000	2.00 m2						X	X					
26×54	38	38x38		1000 * 3000	3.00 m2						×	X					
26x55	38	38x38	7	1000 * 4035	4.04 m2						×	X					
26×60	38	38x38		1219 * 3658	4.46 m2						×	X					
26×70	38	38x38		1524 * 4037	6.15 m2						X	X					
26x31	38	19x19	-	997 * 4045	4.03 m2				•		×	X					
26x35	38	19x19	160	1645 * 2980	4.90 m2				•		×	X					
26x36	38	19x19	No.	1225 * 3665	4.49 m2						×	X					
26x90	51	51x51		1230 * 3665	4.51 m2	•	•	•	•	•	×	×					
26x91	51	25×25		1225 * 3665	4.49 m2	•	•	•	•	•	×	×					
36×80	38	38x38		575 * 3055	1.76 m2						X	X					

■ Em stock

X Pedido sob consulta

PROCESSO DE PULTRUSÃO

Pultrusão é um processo que permite a produção contínua de perfis compósitos, com secções constantes e propriedades desenhadas especificamente de acordo com as aplicações.

Os perfis pultruditos estruturais são utilizados numa ampla gama de aplicações com a vantagem de elevada resistência, baixo peso, transparência eletromagnética, isolante eléctrico e isenção total de manutenção.

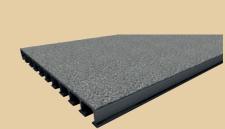
As aplicações incluem:

■ Arquitectura ■ Efluentes

■ Indústria
■ Construção

■ Telecomunicações
■ Infraestruturas

■ Ferroviária
■ Escadas e plataformas


■ Energia
■ Perfis de fachada

■ Transportes
■ Pontes pedonais

■ Química ■ Rodoviárias

PERFIS PULTRUDIDO

PERFIS PULTRUDIDOS											
DESCRIÇÃO	DESIGN	DIMENSÕES AxBxt (mm)	PESO (kg/m)								
	(Z) B	25x38x6	1.40								
CANTONEIRA DE ESQUINA	>	38x38x6	1.60								
(Y-Forma)	// / / / / / / / / / / / / / / / / / /	51x38x6	1.70								
		32x32x4	0.42								
		38x38x5	0.68								
	ΤМ	51x51x6	1.14								
CANTONEIRA (L-Forma)	>	76x76x6	1.77								
(L-i Olilla)	- <u>-</u>	76x76x9.5	2.57								
		101x101x9.5	3.48								
		101x101x12.7	4.57								
	<i></i> у-Т	120x40x5	1.81								
		152x41x6	2.72								
PERFIL (U-Forma)	/	152x51x9.5	4.35								
, ,	-E	203x56x9.5	5.34								
	 	292x70x12.7	9.60								
	——————————————————————————————————————	100x50x8	3.06								
PERFIL (I-Forma)	>	152x76x9.5	5.32								
(і-гоппа)	- -	203×101×9.5	7.20								
		76x76x6	2.67								
PERFIL	>	102x102x8	4.50								
(H-Forma)		152x152x9.5	8.10								
	- <u>-</u>	203x203x12.7	14.36								
TUBO QUADRADO (Perfil de corrimão)	- 	50x50x5	1.74								
PERFIL CORRIMÃO (Perfil de corrimão)	A	70x63x5	1.70								
PERFIL RODAPÉ (Perfil de corrimão)	H V	150x15x4	1.17								
TUBO REDONDO (Perfil de corrimão)		26x16.5	0.63								

GUIA BÁSICO DE MAQUINAÇÃO

- Os plásticos de engenharia são fáceis de maquinar em todos os tipos de máquinas e ferramentas actuais.
- É necessário verificar algumas regras elementares para obter ganhos de tempo e peças finais com o acabamento desejado.
- Os ângulos de ataque e de saída da apara das ferramentas de corte devem ser nulos (0°) ou levemente negativos (-90/93°).
- Ferramentas de carboneto de tungsténio ou aço rápido (HSS) são as recomendadas.
- Os polietilenos e polipropilenos podem ser maquinados com ferramentas de madeira.
- Os materiais com fibra de vidro devem ser maquinados com ferramentas diamantadas e aspiradas as aparas de corte.

Lubrificação

Algumas operações podem ser feitas a seco. No entanto, para evitar o sobreaquecimento normal quando se fazem furos longos ou avanços rápidos, é recomendado o uso de um fluido de corte. Pode ser usado ar comprimido.

Torneamento

As velocidades recomendadas são de 50 a 500mm por minuto, consoante a natureza dos trabalhos. Em avanços, tanto o desbaste como o acabamento devem ter 0,5mm por rotação.

Furação

Utilizar de preferência brocas helicoidais de aço rápido, eliminar as arestas vivas da zona de corte, reduzir a alma da broca para prolongar a aresta de corte até ao centro. O ângulo da ponta pode ser reduzido até 120°, e o ângulo de saída pode ser aumentado até 12° no caso de se pretender avanços mais rápidos.

Em caso de dúvida ou questão, por favor consulte o nosso Departamento Técnico.

OUTROS PRODUTOS

Controle de fluídos

■ Válvulas, Tubos e Acessórios em PVC, PP, PEHD e PVDF

■ Bombas anti--corrosivas

Saniplac Clad System

Sistema de painéis para revestimento de armazéns, unidades industriais, cozinhas industriais, hospitais, balneários e zonas húmidas.

CONTACTOS GRUPO MITERA

Zona Sul - Mitera

Alto da Bela Vista, Pavilhão 86A/B, Urbanização SULIMPARK 2735-521 – Aqualva-Cacém

Telf.: +351 213 600 000 Fax: +351 213 600 009 E-mail: comercial@mitera.pt Site: www.mitera.pt Zona Norte - Norlene

Rua de Rebordãos, 214 4435-416 Rio Tinto

Telf.: +351 224 854 740 Fax: +351 224 854 749 E-mail: comercial@norlene.pt Site: www.norlene.pt